责任声明

版权所有归@武汉时基高压试验设备有限责任公司

本使用说明书所提及的商标与名称,均属于其合法注册公司所有,本使用说明书 受著作权保护,所撰写的内容均为公司所有,本说明书所提及的产品规格或相关 信息,未经许可,任何单位或个人不得擅自仿制、复制、修改、传播或出版,本 使用说明书所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。 可随时查阅我公司官网: www.kvakva.cn,本使用说明书仅作为产品使用指导, 所有陈述、信息等均不构成任何形式的担保。

服务承诺

感谢您使用时基电力生产的产品,在您初次使用该仪器前,请您详细地阅读此使 用说明书,以便正确使用仪器,充分发挥其功能,并确保安全。

我们深信优质、系统、全面、快捷的服务是事业发展的基础。经过多年的不断探 索和进取,我们形成了"重客户、重质量"的服务理念。以更好的产品质量,更 完善的售后服务,全力打造技术领先、质量领先、服务领先的电力试验产品品牌 企业。构建良好的市场服务体系,为客户提供满意的售前、售后服务!

安全要求

为了避免可能发生的危险,请阅读下列安全注意事项。

首先,请使用我公司标配的附件。

防止火灾或电击危险,确保人生安全。在使用本产品进行试验之前,请务必详细 阅读产品使用说明书,按照产品规定试验环境和参数标准进行试验。

使用产品配套的保险丝。只可使用符合本产品规定类型和额定值的保险丝。产品 输入输出端子、测试柱等均有可能带电压,试验过程中在插拔测试线、电源插座 时,会产生电火花,请务必注意人身安全!请勿在仪器无前(后)盖板的情况下 操作仪器/仪表。

试验前,为了防止电击,接地导体必须与真实的接地线相连,确保产品正确接地。

试验中,测试导线与带电端子连接时,请勿随意连接或断开测试导线,试验完成 后,按照操作说明关闭仪器,断开电源,将仪器按要求妥善管理。

若产品有损坏或者有故障时, 切勿继续操作,请断开电源后妥善保存仪器,并 与本公司售后服务部(027 - 6191 5220)联系,我们技术人员乐于为您服务。

请勿在潮湿环境下使用仪器。

请勿在易爆环境中使用仪器(防爆产品除外)。

请保持产品表面清洁,干燥。

产品为精密仪器,在搬运中请保持向上并小心轻放。

联系方式

生产商:武汉时基高压试验设备有限责任公司 地址:武汉市盘龙经济开发区天纵城 C5 栋 2 单元 2603 室 销售: 151 7143 2867 销售: 138 7156 8672 售后: 027-6191 5220 产品官方网站: www.kvakva.cn www.kv-kva.com

目录

第一章:	产品概述	- 4 -
第二章:	主要功能与特点	- 4 -
第三章:	主要技术指标	- 5 -
第四章:	仪器面板	- 6 -
第五章:	操作方法	- 6 -
第六章:	注意事项	22 -
附录一:	单相测试空载时各种接线方法的变压器短路方法	23 -
附录二:	单相电源负载损耗试验接线图	23 -
附录三:	在低电压下的空载损耗的校正	23 -
附录四:	空载损耗试验时试验电源容量的确定	24 -
附录五:	负载损耗试验时试验电源容量的确定	24 -

第一章:产品概述

本测试仪是专用于配电电力变压器容量测量、变压器空载及短路损耗测量的仪器, 并具有谐波分析功能,方便对现场电网质量的分析。该仪器电路设计精巧,思路 独特,仪器内部采用先进的六路同步交流采样及数字信号处理技术,成功的解决 了低功率因数测量及多路信号在市电条件下同步测量和计算的难题。同时仪器测 量引入了必要的校正(如:电压校正、电流校正、温度校正、频率校正),从而 使其性能优越,功能强大,体积小,重量轻,操作简单方便,数据准确可靠,可 完全取代传统仪表的测试方法,可显示并记录用户关心的所有测量数据,可作为 现场高精度交流指示仪表使用。仪器使用大容量锂电池供电,以保证仪器的超长 使用时间,大大提高工作效率,减轻劳动强度。

第二章: 主要功能与特点

2.1 负载损耗的测量:

显示三相电压、三相电流、三相功率,自动计算出变压器的阻抗电压百分比,折 算到额定温度、额定电流下的负载损耗,自动判断出油浸式或干式配电变压器的 铁芯型号,测试过程中具有报警自适应提示功能,方便现场用户使用。

2.2 空载损耗的测量:

仪器显示三相电压、三相电流、三相功率,仪器显示施加电源波形的畸变率,自 动计算出变压器的空载电流折算到额定电压下且进行了波形畸变校正的空载损 耗,并显示油浸式或干式配电变压器铁芯的型号。

2.3 单相的测量:

可用于检查变压器单相的缺陷或用于现场无三相电的情况。仪器可记录三次单相 测量的数据,并可根据变压器不同的联结方式计算出变压器的空载电流、空载损 耗、阻抗电压和负载损耗。

2.4 零序阻抗的测量:

零序阻抗的测量适用于高压侧星形接线带中性点的变压器,仪器可记录零序阻抗、 零序电抗、零序电感、阻抗角、零序电阻。

2.5 容量的测量:

仪器内置可充电锂电池,本身可输出三相正弦波逆变电源,输出电压自动调节,

具有软启、软停功能,无需任何外部电源可实现配电变压器容量的测量和型号的 判断,同时显示变压器阻抗电压和折算到额定温度、额定电流下的负载损耗。 2.6 在仪器允许的测量范围可直接测量,超出测量范围可外接电压、电流互感器, 仪器可设置外接电压、电流互感器的变比,直接显示施加的电压、电流的值。 2.7 仪器具有谐波分析功能,可测量多次谐波的含有率及总畸变率,并带有原始 波形及柱状图显示。

2.8 仪器采用大屏幕液晶显示,可在同一屏幕显示三相电压、三相电流、三相功率、三相平均电压、平均电流、三相总功率和相关数据。显示使用中文菜单,中文提示,操作简单。

2.9 交直流两用: 锂电池供电或者 220V 交流充电器供电自适应。

2.10 智能充电管理,剩余电量显示,低电量报警,背光自动调节,节省电量。
 2.11 不掉电时钟和日期显示;数据存储方式分为本机存储和优盘存储,其中本机存储可存储测试数据 200 条,并且本机存储可转存至优盘;优盘存储数据格式为Word 格式,可直接在电脑上编辑打印。

2.12 热敏打印机打印功能,快速、无声。

2.13 人机交互界面更加友好:屏幕顶部状态栏实时显示优盘插入状态,对未连接的设备进行操作时,显示相应的未连接提示信息。

2.14 体积小、重量轻,方便携带使用。

容量测量范围	30kVA-65000kVA
电压测量范围	AC: 50V-850V
电流测量范围	AC: 0.5A-100A
测量精度	 1)电压、电流 ± (读数×0.2%+2字) 2)功率 (0.2≤cos φ≤1) ± (读数×1.0% +2字); 3)容量± (读数×10%+2字)
工作环境	-10°C~40°C; Rh: 10%~85%
外形尺寸	320mm×270mm×145mm; 5kg

~~	
王一 百.	十半十支不指标
77	

第四章:仪器面板

图 1

第五章:操作方法

5.1 智能电量管理

仪器在长时间未操作时,自动调暗液晶背光并发出声音提示,以节省电量;仪器 带低电量充电提示功能、过放保护功能;仪器电量低时可插入仪器配套充电器充 电,并可在充电过程中对仪器进行正常操作使用。

5.2 打印机使用说明

打印机按键和打印机指示灯是一体式。打印机上电后,正常时指示灯为常亮,缺 纸时指示灯闪烁。按一次按键,打印机走纸。

打印机自检:按住按键不放,同时给打印机上电,即打印出自检条。

打印机换纸:扣出旋转扳手,打开纸仓盖,把打印纸装入,并拉出一截(超出一 点撕纸牙齿),注意把纸放整齐,纸的方向为有药液一面(光滑面)向上;合上纸 仓盖,打印头走纸轴压齐打印纸后稍用力把打印头走纸轴压回打印头,并把旋转 扳手推入复位。

5.3 使用操作

所有测试线接好以后,打开电源开关,仪器初始化后进入"主菜单"屏,见图2。

图 2

此时顶栏显示仪器运行时间和电池电量图标,当优盘插入时自动显示优盘图标, 中间显示功能选项,底部显示硬件、软件版本号。

按"上下"、"左右"键选择相应功能选项,按"确认"键进入所选功能菜单。

5.4 三相负载

5.4.1 三相负载参数设置

在"主菜单"屏下选中"三相负载"项后,按"确认"键进入"三相负载参数设置"屏,见图 3。

2019/03/26 星	星期二 09:21:3	7				
三相负载 > 参数设置						
试品类型	油浸式变E	E器 联结组	别 Yyn0			
试验编号	000000	PT 变 比	1.000			
额定容量	50.000 kV	A CT 变比	1.000			
额定高压	10.000 kV	测试电源	外加电源			
试品温度	+25.00 °C	く说	明>			
折算温度	+75.00 °C	设置变压器	器的不同类			
折算公式	折算公式1	型。				
高压直阻	Ω					
低压直阻	mS		4-966			
低压电流	A	开始	TUUTIL			

图 3

"试品类型"、"试验编号"、"额定容量"、"额定高压"、"试品油温"、"折算温度"、 "折算公式"、"高压直阻"、"低压直阻"、"低压电流"、"PT 变比"、"CT 变比"、 "测试电源"为菜单选项,其右边所属各项为功能参数。"说明"部分是对所选 功能的解释说明。当菜单选项被选中时,按"上下"键选择不同菜单功能,按"左 右"键选择菜单选项所属功能参数,按"确认"键跳转到"开始测试"选项;当 菜单选项所属功能参数被选中时,按"上下"键修改参数,按"确认"键或"取

消"键返回菜单选项;当"开始测试"选项被选中时,按"确认"键开始按当前 设置的参数进行测试,按"取消"键返回菜单选项。

试品类型:变压器按绝缘形式分为"油浸式变压器"和"干式变压器",其中"油 浸式变压器"的联结组别可选择"Yyn0"、"Yzn11"、"Dyn11",因为变压器不同 绝缘形式、不同联结组别的负载损耗是不同的,因此只有准确输入此参数才能正 确判断变压器型式。

试验编号:设置本次试验的编号。

额定容量:设置被测变压器的额定容量值,单位 kVA。

额定高压:设置被测变压器的高压侧额定电压值(变压器的分接档位必须在额定档),单位 kV。用于区别不同电压等级的变压器。相同容量、不同电压等级变压器的负载损耗试验参数值是不同的,要做到准确判断,就必须输入被试变压器的 高压侧额定电压值。

试品油温:设置被测变压器的当前温度值。

折算温度:用于对测试结果做温度校正,国标要求油浸式变压器的负载损耗应在 温度为75℃时进行,干变根据不同要求分别为100℃、120℃、145℃,所以必须 将测试结果校正到折算温度才能正确判断变压器形式。

折算公式:负载损耗进行温度折算时使用的公式。当附加损耗比较小时,可以忽略附加损耗时可以使用"折算公式1";当附加损耗不可忽略时,可以使用"折算公式2",此时需要设置高压直阻、低压直阻和低压电流。

高压直阻:使用"折算公式2"时才需要设置。指高压侧三相线间直流电阻平均值,即(RAB+RBC+RCA)/3,单位Ω。

低压直阻: 使用"折算公式 2"时才需要设置。指低压侧三相线间直流电阻平均 值,即(Rab+Rbc+Rca)/3,单位 mΩ。

低压电流: 使用"折算公式 2"时才需要设置。指被测变压器的低压侧额定电流值,单位 A。

PT 变比: 当被测电压超过本仪器的电压测量范围时,需要外接电压互感器扩展 量程进行电压测试。此时需要根据外接电压互感器的变比值进行此参数的设置。 例如,采用 10kV/400V 的 PT 时,应将 PT 变比设置为 25。

CT 变比: 当被测电流超过本仪器的电流测量范围时, 需要外接电流互感器扩展

量程进行电流测试。此时需要根据外接电流互感器的变比值进行此参数的设置。 例如,采用 100A/10A 的 CT 时,应将 CT 变比设置为 10。

测试电源:测试时使用的电源。外加电源:使用外接调压器进行负载测试;内置 电源:使用仪器内部电源进行负载测试,不需要其它外部辅助设备,简单方便。

5.4.2 三相负载测试

在完成参数设置后开始进行测试,使用"外加电源"测试时,进入"正在测试" 屏,见图 4,时时刷新测试数据,此时按"确认"键进入"测试结果"屏,见图 五,按"取消"键返回上一屏。注意:在"正在测试"屏时,仪器带有自适应报 警提示功能,依据 JB/T501-2008 中 14.1 规定,在进行负载测试时,施加电流达 到额定电流的 50%以上即可,因此仪器按额定电流的 50%做为参考值,当施加电 流越接近参考值时报警频率越高,越远离参考值时报警频率越低,利用此功能, 现场用户在使用外接调压器试验时可根据报警频率来判断是否加压完成,更方便 现场使用。在此界面下按任意键取消提示报警功能。

2019/03/26 星期二 09:25:55				
三相负载 > 正在测试	额定电流: 2.8867A			
电压 (V) 电流	(A) 功率(W)			
UAB: 121.25 IA: 0	.9996 PA: 23.956			
UBC: 121.22 IB: 1	.0000 PB: 23.951			
UCA: 121.25 IC: 1	.0001 PC: 23.955			
UP: 121.24 IP: 0	.9999 ΣP: 71.863			
加压频率: 49.997 Hz	: 功率因数: 0.3422			
阻抗电压: 3.5857%	试品类型: S11及以			
额定损耗:714.09₩				
测试完成				

图 4

2019/03/26 星期二 0	9:26:21			
三相负载 > 测试结界	艮	额定	电流:	2.8867A
电压 (V)	电流	(A)	功	率(₩)
UAB: 121.25	1A: 0	.9996	PA:	23.954
UBC: 121.22	IB: 1	.0000	PB:	23.951
UCA: 121.25	IC: 1	.0001	PC:	23.957
UP : 121.24	1P: 0	.9999	ΣP :	71.863
加压频率: 49.	.997 Hz	功率	因数:	0.3422
阻抗电压: 3.5	5857%	试品	类型:	\$11及以
额定损耗:714	1.08W			上
继续测试	保存	结果	打印	印结果

图 5

使用"内置电源"测试时,完成后直接进入"测试结果"屏,如果接线不正常, 仪器会自动提示"请检查接线!!"。

在"测试结果"屏下,按"左右"键选择"继续测试"、"保存结果"、"打印结果", 按"确认"键执行当前选项,按"取消"键返回上一屏。

测试结果中,UP 指三相所加电压平均值;IP 指三相所加电流平均值;ΣP 指三 相功率和;功率因数指三相所加信号功率因数平均值;阻抗电压是进行完温度校 正和频率校正后的值;额定损耗是进行完温度校正后的值。

如果在判定"试品类型"时显示"未知",说明变压器类型在两种类型之间,无法归类。

依据 JB/T501-2006 中 14.9 要求,试验时,应保证外加试验电源的频率在 50HZ ± 5%范围内。

5.4.3 三相负载测试接线

5.4.3.1 使用内置电源

将仪器的电流输出端子"出 IA"、"出 IB"、"出 IC"及电压端子"UA、"UB"、"UC" 分别接到变压器的高压侧,变压器的低压侧要可靠短路,并确保接触电阻可以忽略,以免影响测试数据,接线见图 6。

图 6

5.4.3.2 使用外加电源

将三相电源的"UA"、"UB"、"UC" 分别接入仪器的电流输入端子"入 IA"、"入 IB"、"入 IC",将仪器的电流输出端子"出 IA"、"出 IB"、"出 IC"及电压端子 "UA"、"UB"、"UC"分别接到变压器的高压侧,变压器的低压侧要可靠短路,并 确保接触电阻可以忽略,以免影响测试数据,接线见图 7。

5.5 容量测试

5.5.1 容量测试参数设置

在"主菜单"屏下选中"容量测试"项后,按"确认"键进入"容量测试参数设置"屏,见图 8。

2019/03/26 星	星期二 09:24:25	
容量测试	〉参数设置	
试品类型	油浸式变压器	器 联结组别 YynO
阻抗电压	4.00 %	<说明>
试验编号	000000	设置变压器的不同类
额定高压	10.000 kV	型。
额定低压	0.4000 kV	
试品温度	+25.00 °C	
折算温度	+75.00 °C	
测试电源	内置电源	开始测试

图 8

具体使用操作 5.4.1 三相负载参数测试。

试品类型:变压器按绝缘形式分为"油浸式变压器"和"干式变压器",其中"油 浸式变压器"的联结组别可选择"Yyn0"、"Yzn11"、"Dyn11",因为变压器不同 绝缘形式、不同联结组别的负载损耗是不同的,因此只有准确输入此参数才能正 确判断变压器型式。

阻抗电压:若已知阻抗电压应输入阻抗电压,若不知阻抗电压必须输入0,仪器可自动进行判断;当测试非标变压器时,需正确输入此参数,才可测出实际容量。 试验编号:设置本次试验的编号。

额定高压:设置被测变压器的高压侧额定电压值(变压器的分接档位必须在额定档),单位 kV。用于区别不同电压等级的变压器。相同容量、不同电压等级变压器的负载损耗试验参数值是不同的,要做到准确判断,就必须输入被试变压器的高压侧额定电压。

额定低压:设置被测变压器的低压侧额定电压值,单位 kV。

试品油温:设置被测变压器的当前温度值。

折算温度:用于对测试结果做温度校正,因容量判断主要的依据为变压器的短路 试验的数据包括阻抗电压和负载损耗,我们将所测出的实际数据,按要求校正到 折算温度下,再查表得到被试变压器的实际容量;国标要求油浸式变压器的负载 损耗应在温度为75℃时进行,干变根据不同要求分别为100℃、120℃、145℃, 所以必须将测试结果校正到折算温度才能正确判断变压器容量。

测试电源:进行测试时使用的电源。外加电源:使用外接调压器进行容量测试; 内置电源:使用仪器内部电源进行变压器容量测试,不需要其它外部辅助设备。

5.5.2 容量测试

在完成参数设置后开始进行测试,使用"外加电源"测试时,进入"正在测试" 屏,见图 9,时时刷新测试数据,此时按"确认"键进入"测试结果"屏,见图 10,按"取消"键返回上一屏。

使用"内置电源"测试时,完成后直接进入"测试结果"屏。

2019/03/26 星期二	09:30:28			
容量测试 > 正在派	则试			
电压 (V)	电流 (A)	功率(W)		
UAB: 10.381	IA: 0.0828	PA: 0.1532		
UBC: 10.383	IB: 0.0828	PB: 0.1528		
UCA: 10.386	IC: 0.0828	PC: 0.1530		
UP : 10.383	IP: 0.0828	ΣP: 0.4590		
实测容量: 55	.268kVA 阻抗电	1压: 3.6905%		
判断容量: 50	.000kVA 额定损	現耗: 664.75W		
试品类型: S1	1及以上 功率因	國数: 0.3081		
测试完成				

图 9

时基电力-专注电力试验设备的制造与研发 咨询服务: 027 - 6191 5220

2019/03/26 星期二	09:30:51	
容量测试 > 测试约	昔果	
电压 (V)	电流 (A)	功率 (W)
UAB: 10.381	IA: 0.0828	PA: 0.1532
UBC: 10.383	IB: 0.0828	PB: 0.1527
UCA: 10.386	10: 0.0828	PC: 0.1530
UP : 10.383	IP: 0.0828	$\Sigma P: 0.4590$
实测容量: 55	.269kVA 阻抗F	电压: 3.6904%
判断容量: 50	.000kVA 额定指	员耗: 664.74W
试品类型: S1	1及以上 功率因	因数: 0.3081
继续测试	保存结果	打印结果

图 10

在"测试结果"屏下,按"左右"键选择"继续测试"、"保存结果"、"打印结果", 按"确认"键执行当前选项,按"取消"键返回上一屏。

测试结果中,UP 指三相所加电压平均值;IP 指三相所加电流平均值;ΣP 指三 相功率和;功率因数指三相所加信号功率因数平均值;阻抗电压是进行完温度校 正和频率校正后的值;额定损耗是进行完温度校正后的值,如果在"判断容量" 时显示"未知",说明变压器容量在两种容量类型之间,无法归类。如果在判定

"试品类型"时显示"未知",说明变压器类型在两种类型之间,无法归类。 依据 JB/T501-2006 中 14.9 要求,试验时,应保证外加试验电源的频率在 50HZ ±5%范围内。

5.5.3 容量测试接线:参照 5.4.3。

5.6 三相空载

5.6.1 三相空载参数设置:在"主菜单"屏下选中"三相空载"项后,按"确认" 键进入"三相空载参数设置"屏,见图 11。

2019/03/26 月	≧期09:31:40				
试品类型	油浸式变压器	皮			
试验编号	000000	<说明>			
额定容量	50.000 kVA	设置变压器的不同			
额定高压	10.000 kV	尖 型。 			
额定低压	0.4000 kV				
PT 变 比	1.000				
CT 变比	1.000	开始测试			

图 11

具体操作: 参照 5.4.1。

试品类型:变压器按绝缘形式分为"油浸式变压器"和"干式变压器",当选择 "干式变压器"时还需要设置变压器的阻抗电压。在进行空载试验时,此参数须 设置正确才能准确判断变压器形式。

试验编号:设置本次试验的编号。

额定容量:设置被测变压器的额定容量值,单位 kVA。

额定高压:设置被测变压器的高压侧额定电压值,单位 kV。

额定低压:设置被测变压器的低压侧额定电压值,单位 kV。

PT 变比: 当被测电压超过本仪器的电压测量范围时,需要外接电压互感器扩展 量程进行电压测试。此时需要根据外接电压互感器的变比值进行此参数的设置。 例如,采用 10kV/400V 的 PT 时,应将 PT 变比设置为 25。

CT 变比: 当被测电流超过本仪器的电流测量范围时,需要外接电流互感器扩展 量程进行电流测试。此时需要根据外接电流互感器的变比值进行此参数的设置。 例如,采用 100A/10A 的 CT 时,应将 CT 变比设置为 10。

5.6.2 三相空载测试

在完成参数设置后开始进行测试,进入"正在测试"屏,见图 12,时时刷新测试数据,此时按"确认"键进入"测试结果"屏,见图 13,按"取消"键返回上一屏。

2019/03/26 星期二 09	9:35:06			
三相空载 > 正在测证	7	应加	电压:	399.98V
电压 (V)	电流	(A)	功	率 (₩)
Uab: 398.34	a: 0	.9998	Pa:	39.920
Ubc: 398.28	b: 0	. 9999	Pb:	39.915
Uca: 398.34	c: 0	.9999	Pc:	39.933
Up : 398.32	p: 0	. 9999	$\Sigma p:$	119.77
空载电流: 1.39	13%	功率因	数:(0.1736
额定损耗: 120.	77W	加压频	[率: 4	49.997Hz
试品类型: S11		畸变系	、数:-(0.0029%
测试完成				

图 12

时基电力-专注电力试验设备的制造与研发 咨询服务: 027 - 6191 5220

2019/03/26 星期二 (09:35:31			
三相空载 > 测试结	果	应加	电压:	399.98V
电压 (V)	电流	(A)	功	率(₩)
Uab: 398.34	a: ()	.9999	Pa:	39.926
Ubc: 398.28	b: 1	.0000	Pb:	39.913
Uca: 398.34	c: 0	.9999	Pc:	39.933
Up : 398.32	p: 0	.9999	Σp:	119.77
空载电流: 1.3	913%	功率因	国数:(0.1736
额定损耗: 120	.77W	加压步	页率: 4	49.997Hz
试品类型: S11		畸变系	系数:-(0.0001%
继续测试	保存	结果	打印	印结果

图 13

在"测试结果"屏下,按"左右"键选择"继续测试"、"保存结果"、"打印结果", 按"确认"键执行当前选项,按"取消"键返回上一屏。

测试结果中,Up 指三相所加电压平均值;Ip 指三相所加电流平均值;Σp 指三 相功率和;功率因数指三相所加信号功率因数平均值;畸变系数指电压波形畸变 系数;空载电流是进行完频率校正后的值;额定损耗是进行完波形校正、频率校 正、电压校正后的值,其中频率校正时,P1(磁滞损耗与总的铁芯损耗之比)、P2(涡 流损耗与总的铁芯损耗之比)分别取值 0.5,电压校正时铁芯硅钢片种类按冷轧 处理,指数 n 取 2。

如果在判定"试品类型"时显示"未知",说明变压器类型在两种类型之间,无法归类。

5.6.3 三相空载测试接线

将三相电源的"UA"、"UB"、"UC"分别接入仪器的电流输入端子"入 IA"、"入 IB"、"入 IC",将仪器的电流输出端子"出 IA"、"出 IB"、"出 IC"及电压端子 "UA"、"UB"、"UC"分别接到变压器的低压侧,变压器的高压侧开路,见图 14。

图 14

5.7 单相测试

当现场无三相电源或需要检查变压器单相故障时需用单相法测量。在"主菜单" 屏下选中"单相测试"项后,按"确认"键进入"单相测试功能选择",见图 15。

图 15

注意:针对变压器不同联结方式,单相折算三相时公式不同,不能选错。

负载星接和空载星接是指被测变压器加压侧为星型接法,负载角接和空载角接是 指被测变压器加压侧为三角型接法。

5.7.1 单相负载测试

单相负载测试:见 5.4.1。

在完成参数设置后开始进行测试,进入"正在测试"屏,见图 16。

2019/03/26	星期二 0	9:37:08			
负载星接 > 正在测试			额定	电流:	2.8867A
电压	(V)	电流	(A)	功	率 (₩)
UAB: 2	29.97	IA: 0	.9998	PA:	39.927 🖶
UBC: 2	29.97	IB: 0	. 9998	PB:	39.923
UCA: 0	.0000	IC: 0	.0000	PC:	0.0000
U : 2	29.97	: 0	.9998	Ρ:	39.923
加压频	率: 49	.997Hz	功率	因数:	0.1736
加压绕	组: BC		已测	绕组:	AB
说明: 按 锁定加压 定后按方	注、下 5绕组或 三、右键	键选择 取消锁 完成三	加压绕 定。待 相折算	组。打 三相约	安确认键 尧组都锁

图 16

在"正在测试"屏下,按"上下"键选择加压绕组,按"确认"键锁定加压绕组 数据或取消锁定。待三相绕组数据都锁定后按"左右"键完成三相折算。 测试时,测量完一相后,调压器归零断电,改变外部变压器的接线,然后按"上 下"键选择与之相对应的加压绕组,调压器升压,升到额定电流后,按"确认"

键锁定当前绕组数据。待 AB、BC、CA 三相测量完成后按"左右"键进入"测试结果"屏,见图 17。

2019/03/26 星期二	09:37:48			
负载星接 > 测试结	额定	电流:	2.8867A	
电压 (V)	电流	(A)	功	率 (₩)
UAB: 229.97	A: 0	.9998	PA:	39.927
UBC: 229.97	IB: 0	.9998	PB:	39.919
UCA: 229.97	IC: 0	.9998	PC:	39.919
UP : 229.97	1P: 0	.9998	ΣP:	119.76
加压频率:4	9.997Hz	功率	因数:	0.1736
阻抗电压:5	.7866%	试品	类型:	S11及以
额定损耗:59	95.13W			上
继续测试	保存	结果	打印	印结果

图 17

测试结果的显示定义、操作使用参考 5.4.2。

5.7.2 单相负载测试接线

采用单相电源,依次在变压器的高压侧 AB、BC、CA 相加压。现以高压侧为三角 形连接变压器,测量 AB 相为例说明:将单相电源的"UA"接入仪器的输入端子 "入 IA",将仪器的输出端子"出 IA"及"UA"接到变压器的高压侧 A 相,单相 电源的零相"UO"接到仪器的"UO"及变压器的"B"相,变压器的低压侧要可 靠短路,并确保接触电阻可以忽略,以免影响测试数据,并将非测试相 BC 短路, 接线见图 18。详细接线图参考附录二。

图 18

5.7.3 单相空载测试

单相空载测试的参数设置参考 5.6.1。

在完成参数设置后开始进行测试,进入"正在测试"屏,此屏下的使用操作参考 5.7.1。

测试结果的显示定义、操作使用参考 5.6.2。

5.7.4 单相空载测试接线

采用单相电源,依次在变压器低压侧 ab、bc、ca 相加压,非加压绕组应依次短路。现以低压侧星形连接带中性点引出的变压器,测量 ab 相为例说明,其它接法见附录一。

将单相电源的"UA"接入仪器的输入端子"入IA",将仪器的输出端子"出IA" 及"UA"接到变压器的低压侧 a 相,单相电源的零相"UO"接到仪器的"UO"及 变压器的 b 相,低压侧 c、o 短路,变压器的高压侧开路,接线见图19。

图 19

5.8 零序阻抗

5.8.1 零序阻抗参数设置

在"主菜单"屏下选中"零序阻抗"项后,按"确认"键进入"零序阻抗参数设置"屏,见图 20。

2019/03/26 星	星期二 09:38:16	
零序阻抗	〉参数设置	
试验编号	000000	<说明> 设置本次试验的编
PT 变 比	1.000	号。
CT 变 比	1.000	开始测试

图 20

具体使用操作参照 5.4.1。

试验编号:设置本次试验的编号。

PT 变比: 当被测电压超过本仪器的电压测量范围时,需要外接电压互感器扩展 量程进行电压测试。此时需要根据外接电压互感器的变比值进行此参数的设置。 例如,采用 10kV/400V 的 PT 时,应将 PT 变比设置为 25。

CT 变比: 当被测电流超过本仪器的电流测量范围时,需要外接电流互感器扩展 量程进行电流测试。此时需要根据外接电流互感器的变比值进行此参数的设置。 例如,采用 100A/10A 的 CT 时,应将 CT 变比设置为 10。

5.8.2 零序阻抗测试

在完成参数设置后开始进行测试,进入"正在测试"屏,见图 21,时时刷新测试数据,此时按"确认"键进入"测试结果"屏,见图 22,按"取消"键返回上一屏。

2019/03/26 星期二 09:39:47				
零序阻抗 > 正在测试				
U = 20.009 V I = 5.8997 A P = 59.086 W	cos = 0.5005 Frq = 49.997 Hz			
$ Z = 10.174 \Omega$ X = 8.8087 Ω L = 0.0280 H	Φ= 59.966 ° R = 5.0925 Ω			
测试完成				

图 21

2019/03/26 星期二 09:40:10	
零序阻抗 > 测试结果	
U = 20.009 V I = 5.8998 A P = 59.085 W	cos = 0.5005 Frq = 49.998 Hz
Z = 10.174 Ω	Φ= 59.966°
X = 8.8085 Ω L = 0.0280 H	$R = 5.0924 \Omega$
继续测试 保存组	吉果 打印结果
图:	22

在"测试结果"屏下,按"左右"键选择"继续测试"、"保存结果"、"打印结果", 按"确认"键执行当前选项,按"取消"键返回上一屏。 显示数据含义如下:

时基电力-专注电力试验设备的制造与研发 咨询服务: 027 - 6191 5220

U	电压有效值,单位:V
Ι	电流有效值,单位: A
Р	有功功率,单位:₩
cos	功率因数
Frq	信号频率,单位:Hz
Z	零序阻抗,单位:Ω
X	零序电抗,单位:Ω
L	零序电感,单位:H
Φ	阻抗角,单位:度
R	零序电阻,单位:Ω

5.8.3 零序阻抗测试接线

零序阻抗的测量适用于高压侧星形接线带中性点的变压器,将单相电源的"UA"接到仪器的"入IA"接线端子,将变压器高压侧A、B、C 三相短路接到仪器的"出IA"、"UA" 接线端子,将电源的零相"UO"接到仪器的"UO" 接线端子 及变压器高压侧的中性点,变压器低压侧开路,接线见图23。

图 23

5.9 谐波分析

5.9.1 谐波分析测试

本仪器具有谐波分析功能,可对外接试验电源的谐波进行分析测试。

在"主菜单"屏下选中"谐波分析"项后,按"确认"键进入"谐波分析测试" 屏。谐波分析的显示方式分为图形模式,见图 24,即显示外加信号的实际波形 和各次谐波的柱形图;数据模式,见图 25,即显示外加信号各次谐波的含有率。

图 25

当光标位于谐波分析相时,可通过"上下"键选择谐波分析相,此谐波分析相和 面板端子相对应;当光标位于显示模式时,可通过"上下"键选择显示图形模式 或数据模式。

5.9.2 谐波分析测试接线

当进行谐波分析时,将需要分析的外加试验电源信号线与面板对应端子相连接即可,具体可参考变压器相关测试项目的接线。

5.10 存储查询

在"主菜单"屏下选中"存储查询"项后,按"确认"键进入,此屏幕用于查看 已经保存至本机存储器的测量结果历史记录,见图二十六。

2019/03/26 星期二	09:45:37		P	
存储查询 > 三相负	额定电流: 2.8867A			
电压 (V)	电流	(A)	功	率(₩)
UAB: 121.22	IA: 0	.9999	PA:	23.951
UBC: 121.18	IB: 1	.0000	PB:	23.936
UCA: 121.23	IC: 0	.9997	PC:	23.930
UP : 121.21	IP: 0	.9999	ΣP :	71.818
加压频率: 49).997 Hz	功率	因数:	0.3421
阻抗电压: 3.	5849%	试品	类型:	\$11及以
额定损耗:71	3.72W			Ŀ
测试时间: 2019年03月26日 09时45分22秒				
记录 001/003 🔷 🔺				

图 26

"记录 005/025",前面的数字表示当前记录的编号(即第几条记录),后面的数 字表示已存储记录总个数;按左右键可查看不同编号的记录。按"确认"键弹出 功能菜单,可进行"打印记录"、"转存优盘"操作。 **打印记录:**将当前查询的存储数据进行打印。

转存优盘:将当前查询的存储数据转存到外接优盘。

5.11 实时时钟设置

在"主菜单"屏下选中"系统设置"项后,按"确认"键进入"系统设置选择" 屏,然后选择"实时时钟设置"项后,按确认键进入"实时时钟设置"屏,见图 27,此屏幕用于修改仪器时钟。

图 27

在"实时时钟设置"屏幕,按左右键移动光标选择要修改的数据,按上下键修改 选中的数值,按"确认"键保存当前设置并返回上一屏,按"取消"键放弃当前 设置并返回上一屏。(注:本时钟设置功能可根据闰年自动计算二月份的天数, 并能根据所设置日期自动计算出星期几。)

第六章:注意事项

6.1 使用仪器时请按本说明书接线和操作。

6.2 接地端子应就近可靠接地。

6.3 测试开始前请输入正确的设置参数, 仪器内部校正运算都要依赖于输入的设置参数。

6.4 测试菜单项选择和实际测试项目及接线要一致。

6.5 电流回路用粗线连接,电压回路用细线连接。

6.6 试验加压时,注意监测电压、电流不要超过仪器额定值,以免损坏仪器。

6.7 测试过程中,不允许拆除地线及仪器接线,严禁带电接拆线操作。

6.8 单相测量时必须用 A 相测量。

6.9 为安全起见,测试完成后应储存数据,然后断开三相测试电源,再翻看测试结果数据或从存储器中仔细查看各项数据。

附录一: 单相测试空载时各种接线方法的变压器短路方法

附录二: 单相电源负载损耗试验接线图

附录三: 在低电压下的空载损耗的校正

空载试验时所加低电压,通常选择在 5%~10%额定电压范围内,换算到额定电压时误差较大,可按下式进行计算: U

$$\mathbf{P}_{0} = \mathbf{P}_{0} \left(\frac{\mathbf{U}_{n}}{\mathbf{U}}\right)^{n}$$

式中:

U′ 试验时所加电压;

Un 绕组额定电压;

P' o 电压为U' 时测得的空载损耗;

Po 相当于额定电压下的空载损耗;

n 指数,数值决定于铁芯硅钢片种类,热轧的取 1.8,冷轧的取 1.9~2;本仪器 n=2。

附录四: 空载损耗试验时试验电源容量的确定

为了选用合适的试验电源,必须在试验前确定其容量。

根据被试变压器的铭牌容量及铭牌所载的空载电流百分数(无铭牌或铭牌未给出 数值的,可查取同型式变压器的额定数据),在额定电压下进行试验时,按下式 计算:

$$S' = SnI0\%$$

式中:

S' 试验所需电源容量; Sn 变压器额定容量; I0% 空载电流百分比。

$$\mathbf{S} \ge \mathbf{S}_n \frac{\mathbf{U}_k}{100} \left(\frac{\mathbf{I}_k}{\mathbf{I}_n}\right)^2$$

附录五: 负载损耗试验时试验电源容量的确定

负载损耗试验所需电源容量 S 可按下式计算:

$$\mathbf{U}_k = \mathbf{U}_n \frac{\mathbf{U}_k \%}{100} \frac{\mathbf{I}_k}{\mathbf{I}_n}$$

所需试验电压 UK 为:

式中: Sn、Un 分别为额定容量和额定电压; In、Ik 分别为额定电流和短路试验电流; S、Uk 分别是所需的视在功率和短路试验电压; Uk% 被试变压器短路电压百分数 (%)。